IX Conference Mathematical Modelling in Physics and Engineering SOLUTIONS OF SOME FUNCTIONAL EQUATIONS IN A CLASS OF GENERALIZED HÖLDER FUNCTIONS

Maria Lupa Institute of Mathematics

The existence and uniqueness of solutions a nonlinear iterative functional equation in the class of r-times differentiable functions with the r-derivative satisfying a generalized Hölder condition is considered

The space $\mathbf{W}_{_{\boldsymbol{\gamma}}}$ and its properties

Consider non-linear functional equation

$$\varphi(x) = h(\varphi[f(x)]) + g(x) \tag{1}$$

where f, g, h are given and φ is a unknown function.

We accept the following notation: $I = [a, b], a, b \in R, d \coloneqq b - a, W_{\gamma}(I)$ - is the Banach space of the r-time differentiable functions defined on the interval *I* with values in *R*, such that, for some M>0; its r-th derivative satisfies the following γ -Hölder condition

$$|\varphi^{(r)}(x) - \varphi^{(r)}(\bar{x})| \le M\gamma(|x - \bar{x}|), \quad \bar{x}, x \in \mathbb{I}.$$

where a fixed function γ satisfies the following condition:

 $(\Gamma) \gamma: [0, d] \rightarrow [0, \infty)$ is increasing and concave, $\gamma(0) = 0$, $\lim_{t \to 0^+} \gamma(t) = \gamma(0)$, $\lim_{t \to d^-} \gamma(t) = \gamma(d)$, $\gamma'_+(0) = +\infty$

We assume that:

(i) $f: I \to I$, $f \in W_{\gamma}(I)$, $\sup_{I} |f'| \le 1$

(ii) $g: I \to R$, $g \in W_{\gamma}(I)$

(iii) $h: R \to R$, $h \in C^r$, $h^{(r)}$ fulfils the Lipschitz condition in *R*.

(iv) there exists $\xi \in I$ such that $\lim_{n \to \infty} f^n(x) = \xi$, $x \in I$, where f^n is the n-th iteration function f

(v) h is analityc function at η_0 , where η_0 is the solution of equation $\eta_0 = h(\eta_0) + g(\xi)$

We define functions $h_k: I \times \mathbb{R}^{k+1} \to \mathbb{R}, k = 0, 1, ..., r - 1$ by the formula

$$\begin{cases} h_0(x, y_0) := h(y_0) + g(x) \\ h_{k+1}(x, y_0, \dots, y_{k+1}) := \frac{\partial h_k}{\partial x} + f'(x) \left(\frac{\partial h_k}{\partial y_0} y_1 + \dots + \frac{\partial h_k}{\partial y_k} y_{k+1} \right). \end{cases}$$
(2)

If f, g, h satisfy the assumptions (i)-(iii) and $\varphi \in W_{\gamma}(I)$ is a solution of equation (1) then the derivatives $\varphi^{(k)}, k = 0, ..., r$ satisfy the system of equations

$$\varphi^{(k)}(x) = h_k \big(x, \varphi[f(x)], \dots, \varphi^{(k)}[f(x)] \big), \qquad x \in I.$$

If assumptions (i)-(iv) are fulfilled and $\varphi \in W_{\gamma}(I)$ is a solution of equation (1) in *I*, then the numbers

$$\eta_k = \varphi^{(k)}(\xi), \ k = 0, ..., r$$

satisfy the system of equations

 $\eta_k = h_k(\xi, \eta_0, \dots, \eta_k), \qquad k = 0, \dots, r$

where h_k are defined by (2).

Main result

Theorem

If the assumptions (i)-((iii) are fulfilled, f is a function monotone in the interval I, the conditions (iv) and (v) are fulfilled for $\xi = 0$, $\eta_0 = 0$ and

 $|h'(0)(f'(0))^r| < 1$

$$h_k(0, \dots, 0) = 0, \quad k = 1, \dots, r$$

then the equation (1) has exactly one solution $\varphi \in W_{\gamma}(I)$ satisfying the condition

Ministerstwo Nauki

i Szkolnictwa Wyższego

$$\varphi^{(k)}(0) = 0, \qquad k = 0, \dots, r$$

Moreover, there exists a neighbourhood U of the point $\xi = 0$ and the number r_0 such that for a function $\varphi_0 \in W_{\gamma}(\overline{U})$, satisfying the condition (3) and the inequality $\|\varphi_0\| \le r_0$, a sequence of functions

 $\varphi_n(x) = h(\varphi_{n-1}[f(x)]) + g(x), \qquad x \in \overline{U},$

converges to a solution of the equation (1) according to the norm in the function space $W_{\gamma}(\overline{U})$.

Organizacja IX Konferencji Modelowanie Matematyczne w Fizyce i Technice (MMFT 2017)

 zadanie finansowane w ramach umowy 829/P-DUN/2017
ze środków Ministra Nauki i Szkolnictwa Wyższego przeznaczonych na działalność upowszechniającą naukę.

(3)